
I ICFP 2003 — Uppsala, Sweden

25–29 August 2003

An Extension of HM(X) with
Bounded Abstract and

Polymorphic Data-Types

Vincent Simonet

Vincent.Simonet@inria.fr
http://cristal.inria.fr/~simonet/

I Introduction 2

Reminder: HM(X)
[Odersky Sulzmann Wehr, 1999]

HM(X) is a generic and constraint based presentation of type systems
of the Hindley–Milner family, with let polymorphism and full type
inference.

I May feature subtyping and custom constraints forms.

I Allows a modular approach of type inference, which is reduced to
constraint solving.

I Introduction 3

Reminder: abstract data-types in ML
[Odersky Läufer, 1992]

Existential types are introduced as an extension of ML data-types:

type t = K of Exists β . β list * (β -> unit)

I This extension preserves type inference
No type annotation is required in the source code: data
constructors introduction and elimination are sufficient to
guide the type checker.

I Introduction 3

Reminder: abstract data-types in ML
[Odersky Läufer, 1992]

Existential types are introduced as an extension of ML data-types:

type t = K of Exists β . β list * (β -> unit)

I This extension preserves type inference
No type annotation is required in the source code: data
constructors introduction and elimination are sufficient to
guide the type checker.

I Values are explicitly packed into existential types by data
constructors:

K ([3; 42; 111], print_int)
K (["Hello"; "World"], print_string)

I Introduction 3

Reminder: abstract data-types in ML
[Odersky Läufer, 1992]

Existential types are introduced as an extension of ML data-types:

type t = K of Exists β . β list * (β -> unit)

I This extension preserves type inference
No type annotation is required in the source code: data
constructors introduction and elimination are sufficient to
guide the type checker.

I Values are explicitly packed into existential types by data
constructors:

K ([3; 42; 111], print_int)
K (["Hello"; "World"], print_string)

I Existential values are opened by pattern matching:

let iter =
function K (x, f) -> List.iter f x

I Introduction 3

Reminder: abstract data-types in ML
[Odersky Läufer, 1992]

Existential types are introduced as an extension of ML data-types:

type t = K of Exists β . β list * (β -> unit)

I This extension preserves type inference
No type annotation is required in the source code: data
constructors introduction and elimination are sufficient to
guide the type checker.

I Values are explicitly packed into existential types by data
constructors:

K ([3; 42; 111], print_int)
K (["Hello"; "World"], print_string)

I Existential values are opened by pattern matching:

let iter =
function K (x, f) -> List.iter f x

I Existential type variables must not escape their scope.
The following piece of code is ill-typed:

let open = function K (x, _) -> x

I Introduction 4

This work

Goal:

I Extending Odersky and Laüfer system with subtyping,

I Allowing bounded quantifications,

I Preserving type inference à la ML.

Proposal:

I A conservative extension of HM(X) with bounded existential and
universal data-types,

I A realistic algorithm for solving constraints in the case of structural
subtyping.

Introduction
I A concrete example

The type system
Solving constraints
Conclusion

A concrete example

I A concrete example 6

Example’s purpose

Before giving a formal description of our contributions, we introduce
them through a concrete example:

I This summarizes the requirement the system must fulfill,

I This gives an informal overview of our proposal.

The background is the Flow Caml language, but no particular knowledge
of its type system is required to understand them.

I A concrete example 7

Flow Caml in one slide

Flow Caml is an extension of the Objective Caml language with a type
system tracing information flow.

I Usual ML types are annotated by security levels, which represent
principals:

!alice int !bob int !clients int α int

I A partial order between these levels specifies legal information flow,
hence the type system has subtyping.

!alice ≤ !clients !alice int ≤ !clients int

I A concrete example 8

The initial problem

Current Flow Caml data-type declarations look like Caml ones:

type (β:level) client_info =
{ cash: β int;

send_msg: β int -> unit;
...

}

I Problem:
Types of two distinct clients

!alice client info !bob client info
do not have an upper bound. As a result, they cannot be
stored in the same data structure, e.g. a list.

I A concrete example 9

Bounded existential data-type

type client_info = Exists β with β ≤ !clients .
{ cash: β int;

send_msg: β int -> unit;
...

}

I All records about clients now have the common type
client info

Hence, they can be stored in a list of type client info list.

I A concrete example 10

Iterating over a clients list

The function send_balances iterates over a list of clients and sends
to each of them a message indicating its current balance:

let rec send_balances = function
[] -> []

| { cash = x; send_msg = f } :: tl ->
f x; send_balances tl

∃β[β ≤ !clients]

β int β int → unit

β int ≤ β int
I Typing the second clause of the
pattern matching yields the constraint:
∀β.(β ≤ !clients) ⇒ (β int ≤ β int)

I A concrete example 11

Summing a clients list

The function total computes the total balance of the bank from the
clients file. It’s principal type is client info list → !clients int.

let rec total = function
[] -> 0

| { cash = x } :: tl ->
x + total tl

client info list → α int ∃β[β ≤ !clients]

β int

β int ≤ α int
I Typing the second clause of the
pattern matching yields the constraint:

∀β.(β ≤ !clients) ⇒ (β ≤ α)
which is equivalent to

!clients ≤ α

I A concrete example 12

An illegal information flow

The function illegal_flow tries to send information about one client
to another client:

let illegal_flow = function
{ cash = x1 } :: { send_msg = f2 } :: _ ->

f2 x1
| _ -> ()

∃β1[β1 ≤ !clients]
β1 int

∃β2[β2 ≤ !clients]
β2 int → unit

β1 int ≤ β2 int

I Typing the first clause of the pattern matching yields
the unsatisfiable constraint:

∀β1β2.(β1 ≤ !clients ∧ β2 ≤ !clients) ⇒ (β1 ≤ β2)

Introduction
A concrete example

I The type system
Solving constraints
Conclusion

The type system

I The type system 14

The language

Types: τ ::= α, β, . . . | τ → τ | ε(τ̄)

Constraints: C, D ::= τ ≤ τ | C ∧ C | ∃α.C

Every existential type constructor has a declaration of the form:

type ε(ᾱ) = ∃β̄[D].τ

type client info = Exists β with β ≤ !clients .
{ cash: β int;

send_msg: β int -> unit;
...

}

I The type system 14

The language

Types: τ ::= α, β, . . . | τ → τ | ε(τ̄)

Constraints: C, D ::= τ ≤ τ | C ∧ C | ∃α.C

Every existential type constructor has a declaration of the form:

type ε(ᾱ) = ∃β̄[D].τ

type client info = Exists β with β ≤ !clients .
{ cash: β int;

send_msg: β int -> unit;
...

}

Expressions: e ::= . . . | 〈e〉ε | openε e1 with e2

Semantics: openε 〈v〉ε with (λx.e) → (λx.e) v

I The type system 15

The key typing rule

Typing judgments have the same form as in HM(X).

C, Γ ` e1 : ε(ᾱ) ε(ᾱ) , ∃β̄[D].τ ′

C, Γ ` e2 : ∀β̄[D].τ ′ → τ β̄ # fv(τ)
C, Γ ` openε e1 with e2 : τ

I First contribution of the paper:
I proved the type system is safe

I The type system 16

Type inference

As usual in constraint-based type systems, type inference is reduced to
constraint solving: we let LΓ ` e : τM be the minimal constraint required
for e to have type τ in the environment Γ.

LΓ ` openε e1 with e2 : τM = ∃ᾱ.

{LΓ ` e1 : ε(ᾱ)M ∧
∃β̄.D ∧ ∀β̄.D ⇒ LΓ ` e2 : τ ′ → τM

where ε(ᾱ) , ∃β̄[D].τ ′

I Reminder:

C, Γ ` e1 : ε(ᾱ) ε(ᾱ) , ∃β̄[D].τ ′

C, Γ ` e2 : ∀β̄[D].τ ′ → τ β̄ # fv(τ)
C, Γ ` openε e1 with e2 : τ

I The type system 16

Type inference

As usual in constraint-based type systems, type inference is reduced to
constraint solving: we let LΓ ` e : τM be the minimal constraint required
for e to have type τ in the environment Γ.

LΓ ` openε e1 with e2 : τM = ∃ᾱ.

{LΓ ` e1 : ε(ᾱ)M ∧
∃β̄.D ∧ ∀β̄.D ⇒ LΓ ` e2 : τ ′ → τM

where ε(ᾱ) , ∃β̄[D].τ ′

I Reminder:

C, Γ ` e1 : ε(ᾱ) ε(ᾱ) , ∃β̄[D].τ ′

C, Γ ` e2 : ∀β̄[D].τ ′ → τ β̄ # fv(τ)
C, Γ ` openε e1 with e2 : τ

I Problem:
The generated constraints include (restricted) forms of
universal quantification and implication, which are generally
not handled by constraint solvers for subtyping.

Introduction
A concrete example
The type system

I Solving constraints
Conclusion

Solving constraints: the case of
structural subtyping

I Solving constraints 18

Reminder: structural subtyping

I Comparable types must have the same shape,

I They can only differ by their atomic leaves,

I In particular, there is no lowest (⊥) or greatest (>) type,

I Naturally arises when extending ML type system with atomic
annotations to perform static analyses.

I Solving constraints 19

The problem

Type inference requires solving constraints that include universal
quantifiers and implications.

I Efficient (polynomial) algorithms that decide top-level implication
of constraints are known (C1 ⇒ C2, where all free variables are
implicitly universally quantified).

But our constraints ∀β̄.D ⇒ C may have free type variables.

I The first order theory of structural subtyping is decidable [Kuncak
Rinard, LICS 2003]

But the given algorithm has a non-elementary complexity.

I Solving constraints 20

Our approach

We strike a compromise between expressiveness and efficiency, thanks
to the particular form of constraints produced by type inference:

∃β̄.D ∧ ∀β̄.D ⇒ C

I Every universal quantifier ∀β̄.D ⇒ · · · comes with the constraint
∃β̄.D.

I The quantification bound ∀β̄.D ⇒ · · · comes from a type declaration
type ε(ᾱ) , ∃β̄[D].τ . As a result, some restrictions can be imposed
about its form.

I Solving constraints 21

Restrictions on quantification bounds

Universally quantified variables must have at most one external lower
bound and one external upper bound:

(1) ∀β1β2β3.(β1 ≤ β2 ≤ β3) ⇒ · · ·
(2) ∀β1β2.(α1 ≤ β1 ≤ α2 ∧ α1 ≤ β2 ≤ α2) ⇒ · · ·
(3) ∀β1β2.(α1 ≤ β1 ≤ β2 ≤ α2) ⇒ · · ·

Multiple bounds yield constraints whose resolution is expensive, thus
thay are disallowed in data-type declarations:

∀β.(β ≤ α1 ∧ β ≤ α2) ⇒ (β ≤ α) ≡ α1 u α2 ≤ α

I Second contribution of the paper:
I designed a realistic algorithm for solving constraints under
the above restriction, and proved its correctness.

I Conclusion 22

Current and future work

I Implementing this framework in the Flow Caml system.

I François Pottier and I designed an extension of HM(X) with guarded
algebraic data-types [Xi Chen Chen, 2003]: they may be described
as a combination of bounded existential types and sum types.

